
AD-RI65 693 EXPERT SYSTEMS FOR C31 VOLUME i A USER'S INTRODUCTION 1/1
(U) MITRE CORP BEDFORD MA J A CLAPP ET AL. OCT 85
ESD-TR-85-125 F19628-84-C-880i

UNCLASSIFIED F/G 17/2 WLEIIIIIIIIIIIuI
IIEIIIIIIIIEEEmmollImIlll

lllo llsolll

lilt~

tu.~ 11111 4 hl

MICROCOPY RESOLUTION TEST CHART
NArIoNAL BUREAUJ OF STANDARDS-1963A

MTR 9630
ESD-TR-85- 125

Expert Systems for C31
Volume I
A User's Introduction

run

ME SOFTWARE CENTER

.LECT
251R2

LUJ J. A. Clapp October 1985

S. M. I-ockett

M. J. Prelle
A. M. Tallant

D. D. Trian
Prepared for Deputy for Acquisition Logistics and 86 "2
Technical Operations, Electronic Systems Division,
AFSC, United States Air Force, Hanscom Air Force

Base, Massachusetts.N u
Approved for public release; distribution unlimited. Bedford, Massachusetts

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

GEORGE G. JACKELEN, Major, USAF

Project Officer, Project 5720
Computer Technology and Support Division

FOR THE COMMANDER

ROBERT J. KENT

Director, Computer Systems Engineering

Deputy for Acquisition Logistics

and Technical Operations

Sal

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassi fied
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

____Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MTR-9630
FSD-TR-Rr)-12S

6.. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(ir appli¢'able I

The MITRE Corporation
6c. ADDRESS (City. State and ZIP Code, 7b. ADDRESS (City. State and ZIP Code)

Burlington Road
Bedford, MA 01730

So. NAME OF FUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION lit applicable

Deputy for Acquisition (cont) ALSE F19628-84-C-0001
ISC. ADDRESS (City. Stale and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

Electronic Systems Division, AFSC ELEMENT NO. NO. NO. NO.

Hanscom AFB, MA 01731-5000
11. TITLE (Include Security Classifigalon) 5720
EXPERT SYSTEMS FOR CJI. (continued)
12. PERSONAL AUTHOR(S)

Clapp, J.A.; Hockett, S.M.; Prelle, M.J.; Tallant, A.M.; Triant, D.D.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Day) 15. PAGE COUNT

Final FROM TO 1985 October 61
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Conlinue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. Artificial Intelligence (AI)
Expert Systems Knowledge Based Systems
Expert Systems Tutorial

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report was written in response to the growing interest at ESD and MITRE in
developing expert systems for CI. This document is intended to help potential
users of expert systems technology to understand what expert systems are and
what they can do. It includes a brief tutorial on expert systems, a review of
the expert systems component of DARPA's Strategic Computing Program, and a
survey of expert system building tools.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED C3 SAME AS RPT. (OTIC USERS F Unclassified

22s. NAME OF RESPONSIBLE INDIVIDJAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
finclude .tAra Code

Diana F. Arimento (65)271-7454 Mail Stop D230

DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSI F IED
SECURITY CLASSIFICATION OF THIS PAGE

8a. Logistics and Technical Operations.

11. VOLUME 1: A USER'S INTRODUCTION

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I
ACKNOWLEDGMENTS

This document has been prepared by The MITRE Corporation,
Software Center General Support, under Project No. 5720, Contract
No. F19628-84-C-0001. The contract is sponsored by the Electronic
Systems Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts 01731.

i

eCCOSlon For

NTIS cRA&IOTIC TAB
Unannounced

Justification

. By -

AV Avlbift Code"

Dist T81d I or

3 TABLE OF CONTENTS

Section Page

1 OVERVIEW 1

1.1 PURPOSE OF THE REPORT 1

1.2 APPROACH 1

2 EXPERT SYSTEMS AND THEIR USES 3

2.1 WHAT IS AN EXPERT SYSTEM? 3

2.2 THE ANATOMY OF AN EXPERT SYSTEM 5

2.2.1 The Knowledge Base 5

2.2.2 The Inference Engine 8

2.2.3 The User Interface 10

2.3 CHOOSING AN EXPERT SYSTEM APPLICATION 12

2.3.1 Advantages of Expert Systems 12

2.3.2 A Word of Caution 13

2.3.3 Selecting the Right Application 14

3 EXAMPLES OF FIELDED EXPERT SYSTEMS 17

3.1 ACE 17

3.2 DENDRAL 19

3.3 MACSYMA 19

3.4 MYCIN 19

3.5 ONCOCIN 20

V

Section Page

3.6 PROSPECTOR 20

3.7 PUFF 21

3.8 SOPHIE 21

3.9 XCON 22

4 TOOLS FOR BUILDING EXPERT SYSTEMS 23

4.1 THE ROLE OF TOOLS IN BUILDING EXPERT SYSTEMS 24

4.2 FEATURES OF EXPERT SYSTEM BUILDING TOOLS 24

4.3 PROGRAMMING LANGUAGES FOR WRITING EXPERT SYSTEMS 27

4.3.1 LISP 28

4.3.2 PROLOG 28

4.3.3 SMALLTALK 29

4.4 DESCRIPTION OF TOOLS 29

4.4.1 EMYCIN 29

4.4.2 MRS 32

4.4.3 0PS5 33

4.4.4 YAPS 33

4.4.5 ROSIE 33

4.4.6 LOOPS 34

4.4.7 AGE 34

4.4.8 KES 35

4.4.9 TIMM 35

vi

3Section Page

4.4.10 DUCK 36

4.4.11 KEE 36

4.4.12 S.1 37

4.4.13 Ml.1 37

4.4.14 EXPERT-EASE 38

5 DARPA'S STRATEGIC COMPUTING PLAN 39

5.1 GOALS 39

5.2 OVERVIEW OF THE SCP 40

5.3 EXPERT SYSTEM TECHNOLOGY 41

5.4 APPLICATIONS 44

5.4.1 Autonomous Vehicles 44

5.4.2 Pilot's Associate 45

5.4.3 Battle Management System 45

5.5 HARDWARE 46

5.6 MANAGEMENT, SCHEDULE ANI) COST 46

6 CONCLUSIONS AND RECOMMENDATIONS 49

6.1 CONCLUSIONS 49

6.2 RECOMMENDATIONS 50

LIST OF REFERENCES 51

vii

LIST OF ILLUSTRATIONS

Figure Page

2-1 Knowledge-Based System vs. Conventional Software
* System 6

2-2 Inheritance--An Example 7

LIST OF TABLES

Table

2-1 Sample User-Machine Dialogue for the STAMMER2 1]
Production System

3-1 Examples of Fielded Expert Systems 18

4-1 Expert System Building Tools: General Information 30

4-2 Expert System Building Tools Characteristics 31

5-1 Strategic Computing Expert Systems Technology 43
Major Functional Capabilities and Milestones

5-2 Strategic Computing Plan Cost Summary in $Millions 47

5-3 Technology Panel on Strategic Computing Joint 48
Directors of Laboratories Subpanel Membership

v

~~viii .

i "f ~ t - - *55 S ~f.'-

,* ' * - f

SECTION 1

OVERVIEW

1.1 PURPOSE OF THE REPORT

-.2 There has been a tremendous burgeoning of interest in
artificial intelligence (AI) over the last few years. Investments
of commercial and government sponsors reflect a widespread belief
that AI is now ready for practical applications. The area of AI
currently receiving the greatest attention and investment is expert
system technology. Most majorh4-h tech corporations have begun
to develop expert systems, and many software houses specializing in
expert system tools and applications have recently appeared.

The defense community is one of the heaviest investors in
expert system technology, and within this community one of the
application areas receiving greatest attention is CUI. Many ESD
programs are now beginning to ask whether expert system applications
for C'I are ready for incorporation into ESD-developed systems, and,
if so, what are the potential benefits and risks of doing so.

This report was prepared by the MITRE Software Center to help
ESD and MITRE personnel working on acquisition programs to address
these issues and to gain a better understanding of what expert
systems are all about.' Many surveys and reports on expert systems
have been written, but'\most focus on the technology itself and the
various construction tehniques it uses. In this report we have
tried instead to provie the kind of information needed by potential
users of expert systei technology, to help them determine whether
this new technoLogy is appropriate for their applications. Thus, it
i° n from a user's, rather than a developer's perspective.

*. 1.2 APPROACH

-'The primary intention of this report is to investigate what
expert systems are and the advances that are being made in expert
system technology for C3I applications. The report begins with a
brief tutorial on expert systems, emphasizing how they differ from
conventional software systems and what they are best at doing ,
(section 2). Some examples of expert systems are presented in
section 3, to let the reader see by example how some expert systems
perform and what kinds of applications are being addressed. Section
4 discusses the use of tools for. building expert systems and

SfX

describes some of the tools now available. Section 5 looks toward
the more distant future by describing the Defense Advanced Research
Projects Agency's (DARPA) Strategic Computing Initiative and its
potential impact on the development of "next generation" expert
systems. Finally, section 6 presents the conclusions of the report.

2

SECTION 2

EXPERT SYSTEMS AND THEIR USES

Considering all of the attention they have received, it is
surprisingly difficult to find a widely accepted, concrete
definition of what expert systems are, how they differ from

Zw so-called conventional software systems, and what kinds of
applications the current state of expert system technology is best
suited to perform. The goal of this section is to shed some light
on these questions. The section also describes several operational

* expert systems and takes a brief look at their performance.

2.1 WHAT IS AN EXPERT SYSTEM?

The most commonly offered definition of an expert system is isa
system that performs like an expert." This definition is somewhat
misleading--no expert systems can completely replace human beings at
their jobs, nor were they designed to do so. Current expert systems
should be more accurately described as capable assistants which help
their human counterparts to perform tasks that require in-depth
understanding of the problem domain and flexible, sophisticated
problem-solving capabilities.

Expert systems solve problems by using knowledge of the
problem, characteristics of acceptable solutions, and methods or
rules for problem solving. Conventional systems sometimes require
the same knowledge, but it is embedded in the algorithms used by the.5 software. The system behavior is explicitly programmed for every
combination of inputs that is expected to occur. Any changes

-~ -u ~require reprogramming the system. An expert system is usually
constructed to contain a data base representing the knowledge it
needs for problem solving. It uses general reasoning processes,
such as induction, to create new facts from existing facts in its
data base. It may also contain information or "rules of thumb"
about reasoning for problem solving in a specific application. This
gives expert systems the potential for dealing with situations that
were not foreseen when the system was programmed. The knowledge in
an expert system might be changed by the system itself or (more
commonly) by the user without reprogramming the software. This
allows an expert system to "learn" and allows users to "teach" a

% system by modifying the rules for its behavior.

Typically, a task that can be performed according to an
a' algorithm does not require human expertise--anyone who follows the

I algorithm can perform the job. Likewise, such tasks do not need

3

expert systems. In contrast, an expert brings to his job a wealth

of knowledge obtained through experience. This experiential
knowledge usually includes:

o detailed, fragmentary information about special
cases,

" partial, generalized knowledge or "rules of thumb,"
o qualitative rather than quantitative reasoning,
" conceptual models expressing the relationships among
problem components, and

o knowledge about the reliability of the information
being used.

For example, compare how a novice and an expert automobile driver
might choose their driving speeds.

Novice: Drive at the speed limit.

If it is foggy or if there is precipitation
on the road, subtract 10 mph from speed.

Expert: Drive at approximately the speed limit.

If the road is wet, slow down a little.

If the road is icy, slow down a lot, but if

the road is sanded, you can go a little

faster than otherwise.

If you see children near the road, drive more
slowly.

Usually drive more slowly on an unfamiliar
road than on a familiar road, unless the
unfamiliar road is a highway.

If you are in a hurry, you can probably drive
5 to 10 mph over the speed limit without
getting stopped, except watch out for a speed
trap near the bridge on Oak Street.

Go very slowly when approaching the curve on
Main Street between Willow and Pine.

This latter kind of knowledge is not well-suited to an algorithmic
computer program, but expert systems employ a variety of new
programming techniques that can make direct use of this kind of
information. To understand how expert systems can do this, it is

4

useful to consider how they are built and how they differ from

conventional software systems.

2.2 THE ANATOMY OF AN EXPERT SYSTEM'

A conventional computer program typically consists of a coded
algorithm for calculating answers to queries it receives, and a data
base of objects and their features (attributes) that is accessed by
the algorithm to provide data for its calculations. The algorithm
embodies most of the knowledge about the problem area that the
system uses. In place of a coded algorithm, an expert system has
two components: a knowledge base that stores explicit knowledge
about the problem in the form of rules and relations, and a general
purpose reasoning mechanism known as the inference engine that uses
the knowledge in the knowledge base to solve problems (see figure
2-1).

2.2.1 The Knowledge Base

The knowledge base contains information about objects in the
system's domain and rules affecting those objects. Information
about objects may be of two types: facts about generic objects,
their characteristics and relations to other objects (e.g., a car
has wheels and is a type of moving object), and facts about the
current state of the world (e.g., my car is parked in the driveway).
Information of both types is often stored in special structures
(sometimes known as frames), which are used for recording objects,
their associated attributes, and sometimes procedures attached to
that object (e.g., a procedure for changing a tire might be attached
to the "car" object) or constraints affecting that object. Many
systems have a mechanism by which frames can inherit attributes from
other frames to which they are related (e.g., a Chevrolet is a car
and, therefore, a Chevrolet has wheels) (see figure 2-2). This is a
powerful way to store data, since it minimizes the number of
attributes that must be directly coupled to an object and the number
of changes to the data base needed when an attribute changes.

'To be more precise, the "anatomy" described in this section
characterizes a larger class of systems known as knowledge-based
systems. Expert systems are knowledge-based systems that perform
some of the functions of a human expert by capturing and using
experts' knowledge. However, since expert systems are by far the
most common and best known types of knowledge-based systems, people
tend to ignore the distinction. We shall do the same!

5

c)0)

ui)

0 r)

E
E V5

CD)

4g 0

0) (0

cj'
00

-~ 0
E d)

CY

w U) X T

OC-C

*0

00

co)
0'

Q 0 00 0

U w

02 G 0

CC

E

xx

10.

CvC

ID 0

EU

aU

Knowledge bases usually also contain rules describing how to
change from one problem state to another, either by changing a value
in the data base or by generating actions to be taken. Rules can
cause an action or procedure to be initiated (e.g., "if the time is
after 6 p.m., then change the time of day to 'night'"). Rules can
also be used to derive new information (e.g., "if a person is a
parent and a female, then that person is a mother"). Other rules
may express constraints that do not allow certain states or
combinations of values to occur. For example, there may be a rule
which says that only one object can be at the same location at the
same time. This rule might be used to reject a potential solution,
generated by an expert system, which moved one piece to the location
of another in a chess game or moved a piece of cargo to an already
occupied space in a cargo loading problem. Similar constraints
might also be used to check the validity of user inputs as well as
values generated by the system. For example, the expert system
might reject an illegal move in a chess game, whether by the player
or the system. Constraints can also be used to monitor conditions
for which an action is required (e.g., if the difference between one
observation and another is greater than some specified value, then
an operator should be alerted).

Another kind of rule might contain a hypothesis and conclusion,
e.g., "if there's smoke, there is an 80% chance there is a fire."
These rules can be used to suggest solutions, even when they are
uncertain. Such rules can embody the "hunches" of experts.

2.2.2 The Inference Engine

The inference engine does the work of transforming input states
or problems into output states, corresponding to goals or solutions.
Individual rules in the knowledge base define single steps, whileF
solving the problem may involve many steps or transformations. For
rule-based expert systems (the most common type), the process can be
characterized as searching for a match between rules in the
knowledge base and either the current state or the current goals of
the problem, selecting a rule which matches, and executing that rule
to create a new state or a subproblem until all necessary
transformations have been found. It has been likened to finding a
path through a maze that has many dead ends. In the expert system,
the paths lead amon;; states in the system for which allowable
transformations have been specified in the knowledge base.

One of the significant differences among expert systems is the
method by which transformations are selected. The inference engines
of rule-based systems have a general logic for selecting which rules
to try, for testing whether a rule is ready to fire, and for

8

V9

~~%

choosing which rule to fire from among those that are ready. Some
systems search forward from the initial state toward a goal state
(known as forward chaining), some search back from a hypothesized
goal state toward the initial state (known as backward chaining),
and some do both. The optimum method may be a function of the
problem, which may have fewer options to match in one direction than
another so the system can converge more quickly on the matches that
have to be tried. It is naturally desirable to try as few rules as
possible, and only those that have a chance at leading to a
solution.

The definition of when a rule is ready to fire depends on
whether forward or backward chaining is being used. In a forward
chaining system, rules are fired when the antecedents, or if-part,
are satisfied. Such a system may be thought of as data-driven. For
example, consider the following rule: "if precipitation and
temperature >32 degrees F, then rain." This rule will be ready to
fire in a forward chaining system if the system "believes" that the
value of temperature is greater than 32 and that precipitation is
present. If this rule actually fired, then the system would
"believe" that it is raining. In a backward chaining system, rules
are fired when the consequent, or then-part, needs to be verified.
Such a system may be thought of as goal-driven. The example ruleI will be ready to fire in a backward chaining system if the system
needs to verify that it is raining. If this rule actually fired,
then the system would next try to verify that the temperature was
greater than 32 and that precipitation was present. In both cases,
firing one rule will normally establish one or more other rules as
ready to be fired.

U If more than one rule is ready to fire at the same time, a
method is needed to choose which rule to fire. This process is
known as conflict resolution. Different systems use different
approaches to conflict resolution methods. For example, one
approach is to simply select the first rule encountered, while
another is to select the rule with the greatest number of "lif"t

conditions (i.e., the most specific rule).

If no more rules can be fired, then a final goal state has been
reached, or the system has reached a dead-end, or the problem cannot
be solved with the knowledge in the system. If a dead-end has been
reached, the current problem state or the current goal must be

% changed in order for the system to be able to explore a different
% path toward a solution. The process of backing off from a dead-end

is known as "backtracking." A common way of backtracking is to undo
the most recent transformations applied to the problem in order to
revert to an earlier state. General techniques and domain-specific
techniques can make this process of "backtracking" more efficient.

9

2.2.3 The User Interface

Expert systems are expected to behave intelligently. This
includes their form of communication with the user. Interfaces are
needed for specifying and constructing the knowledge base, and for
conducting a dialogue with the end user during the problem solving
process. If the interface is between the system and a human, then
the interface may include natural language for input and/or output.
Graphic inputs or outputs may also be appropriate. Any form of
communication that fosters understanding should be employed.
Natural language presents the largest technical challenge. No
full-fledged natural language interfaces (i.e., ones that can
understand language as well as humans can) are yet available, but
many expert systems successfully employ pseudo-natural language
interfaces (i.e., ones in which the form and content of sentences
are restricted).

The knowledge-based structure of an expert system allows its
user-machine interface to contain an especially powerful
feature--the ability to explain the system's results. An
explanation facility can greatly increase user confidence in the
system's answers and can serve as a powerful debugging tool for
system developers.

An example of user-machine dialogue for a rule-based C31 expert
system is shown in table 2-1. The sample dialogue comes from the
STAMMER2 Production System for Tactical Situation Assessment.
STAMMER2 concentrates on the specific task of merchant detection
from radar and external messages.

Some comments about the dialogue are in crder. First, the
system speaks with the user in English (see, for example, lines 3
and 4). Second, the system answers questions about why a fact was
used or how it reached its conclusion. For example, in line 4,
STAMMER asserts (assertion A0223) that CONTACT2 is somewhat unlikely
to be a MERCHANT. In line 5, the user types "WHY is A0223" in order
to learn the immediate reasons for STAMMER concluding A0223. In

*lines 6 and 7, STAMMER responds with the rule that was used, namely,
CLOSE-POPUP. In line 8, the user asks how the rule was applied.
STAMMER responds with a list of assertions that were involved in

* Apermitting the rule to help conclude the assertions A0233.

The following is dialogue between a user and the STAMMER2
Production System for Tactical Situation Assessment. The system
concentrates on the task of merchant detection.

10

4 R

Table 2-1. Sample User-Machine Dialogue for the STAMMER2 Production System

1. RADAR contact at (63.67 -24.17) Time: 115
2. Associated with track CONTACT2
3. Report: CONTACT2 was sighted in the merchant lane LANE2
4. A0223: CONTACT2 is somewhat unlikely to be (-.19) a MERCHANT
5. Question? WHY Is A0223
6. STAMMER applied the rule(s)
7. CLOSE-POPUP

. 8. Question? HOW does rule CLOSE-POPUP apply to A0223
9. The rule was applied with the assertions

10. A0215: CONTACT2 is a contact
11. A0214: SIGHTING3 IS DEFINITELY (.99) THE FIRST SIGHTING OF

CONTACT2
12. A0220 11.73514 is the range of SIGHTING3
13. A0222: 11.73514 is less than 12
14. Question? Quit
15. Leaving EXPLAIN
16. RADAR contact at (63.74 -24.25) Time: 125
17. Associated with track CONTACT2
18. Report: CONTACT2 was sighted in the merchant lane LANE2
19. A0223: CONTACT2 is somewhat unlikely to be (- .39) a MERCHANT
20. Question? WHY is A0223
21. STAMMER applied the rule(s)
22. FASTER-THAN-A-MERCHANT CLOSE-POPUP

C! 23. Question? HOW does rule FASTER-THAN-A-MERCHANT apply to A0223
24. The rule was applied with the assertions
25. A0215: CONTACT2 is a contact
26. A0239: SIGHTING4 is a sighting of CONTACT2
27. A0244: SIGHTING4 is other than a first sighting of its platform
28. A0247: 28.26315 is the speed of SIGHTING4
29. A0257: 28.26315 is greater than 25
30. Question? Quit
31. Leaving EXPLAIN

Source: McCall, et al., p. 27 f. Quoted with permission.

The run begins with the user entering data about a sighting. "Time" is the
present simulated time. STAMMER asserts that the contact is somewhat unlikely
to be a merchant. It provides an explanation at the request of the user.
Material entered by the user is in bold face type.

i~u

Finally, observe that STAMMER states the confidence associated
with its assertions, as in line 4, and that the confidence of an
assertion is dynamic. That is, confidence varies with time. In the
sample run, the confidence associated with the assertion that
CONTACT2 is not a MERCHANT increases from -.19 (line 4) to - .39
(line 19) as new information is made available in lines 16 and 17.

Confidence can assume negative or positive values. Assertions
satisfying a NOT condition are associated with negative confidence
when the inverse assertion is associated with positive confidence.
Thus, the assertion NOT A0223 (which translates into "not a
merchant") is associated with a confidence of -.19 (line 4) and - .39
(line 19).

2.3 CHOOSING AN EXPERT SYSTEM APPLICATION

Expert system technology has opened the door to automating
tasks that previously could not be considered for automation. On
the other hand, expert systems cannot solve all problems.
Identifying an appropriate problem for an expert system solution is
a crucial first step in developing a successful application. This
is the subject of this section.

2.3.1 Advantages of Expert Systems

The knowledge-based architecture of expert systems provides a
number of advantages over conventional systems. For applications
where one or more of these benefits are particularly important, the
application may be worth considering for an expert system solution.

These advantages include the following:

1. Expert systems can deal with fuzzy, uncertain, or
incomplete data. This is the kind of information
people typically have to use in carrying out their
day-to-day activities, but conventional systems
usually balk at. Though accurate data is always
desirable, in the real world precise information is
often unavailable. For example, in military
planning the enemy's situation and intentions are
rarely known with accuracy. Expert systems can use
various problem-solving approaches to handle
information of this type, such as heuristic
reasoning and techniques for using and combining
uncertain evidence.

12

"I % -W9r

2. Expert systems can incorporate fragmentary or
"special case" information. Information can be
added to the knowledge base without knowing when or
how that information will be invoked to solve a
problem. In a conventional program, rules and
relations must be explicitly fitted into the
problem-solving algorithm.

3. Expert systems are easier to modify than
conventional systems. Knowledge expressed as
separate rules is far more modular than knowledge
embedded in algorithms, and, consequently, is
easier to change. Rules can generally be added,
deleted, or modified relatively independently,
without affecting the rest of the program.

4. Expert systems can explain their answers. By
unraveling the reasoning by which it reached an

V answer, a knowledge-based system can describe its
thought process as a series of English-like rules.
This benefits the end user by increasing his
understanding of the result, instilling confidence,
and if more than one solution is possible, helping
him to select among solutions by presenting the
pros and cons of each alternative.

2.3.2 A Word of Caution

Expert systems have many advantages, but they also present some
risks. These must also be considered in selecting an application.
Expert system technology is still new, and it carries the same risks
as does any new technology. There is a limited set of people
available who know how to design, build, and maintain expert
systems. The system acquisition process for expert systems is still
unexplored territory. Little is known about how to integrate expert
systems into larger systems.

The special characteristics of expert systems bring with them
some additional risks. Configuration control may be more difficult
for expert systems than for conventional software systems because of

the changeable nature of the knowledge base, a feature that at the
same time represents one of the greatest strengths of expert
systems. Configuration control may also be hampered by the
unspecified relations among knowledge base elements and by the
deliberate use of side effects in many system designs. Finally,

13

rigorous testing against specifications may prove difficult for some
4 types of applications, such as those for which the domain knowledge

is fuzzy, uncertain, or incomplete.

2.3.3 Selecting the Right Application

There are no simple rules for picking the right applications
for expert systems--every application has its own unique problems
and opportunities that affect both the desirability of an expert
system solution and the chances of its success. Even applications
that have been carefully selected for building an expert system
usually begin with a prototyping phase to verify the feasibility of
the application.

Nonetheless, some general indicators can be considered in the
first stage of selecting an application. The following are some
features that suggest a problem may benefit from an expert system
solution:

'N1. Characteristics of Data:

The data on which the application is based are
incomplete, imprecise, fragmentary, or too complex
to organize into a unified model.

2. Characteristics of the Problem-Solving Method:

There is no practical algorithmic procedure for

solving the problem.

Solutions require reasoning with uncertain
evidence.

3. Characteristics of the Problem:

There are many possible solutions but few
acceptable ones, or there are no completely correct
solutions.

The system will be modified frequently.

Solutions change with time and context.

The system needs to be highly flexible in the kinds
of questions it can answer.

14

:V

For problems that are likely to benefit from expert system
r technology, the following constraints should also be met to improve

the chances that an expert system approach will be successful:

1. The problem and problem-domain are well bounded.
It is important to "think small" in choosing an
initial application, and expand incrementally after
an initial success has been achieved.

2. The problem is neither too easy nor too difficult
for human experts. A useful gauge of this is that
the problem should take on the order of an hour or
two to solve, usually not minutes, and definitely
not days.

3. There is at least one expert in the problem domain
available to work closely with the system
developers. Developing expert systems is a

I cooperative effort between the domain experts and
the experts in knowledge-based systems--seldom can
either group build a successful system on its own.

.

%: 15

SECTION 3

EXAMPLES OF FIELDED EXPERT SYSTEMS

To give the reader a better sense of how expert systems are
currently being employed, this section presents brief descriptions
of some fielded expert systems. The selected examples are listed in
table 3-1. Although C31I examples are more relevant to the needs of
ESD readers, there are currently no truly operational expert systems
for CI applications--in fact, there is a paucity of fielded systems

.~' >:in any field. Therefore, examples have been drawn from a variety of
fields, from wherever working expert systems can be found. The
systems listed in the table are described below. A general
reference follows each description.

3.1 ACE

The Automated Cable Expertise (ACE) system is designed for
troubleshooting and maintenance of telephone cables. ACE is an
automated analysis system that digests hundreds of telephone
maintenance reports daily. These reports are provided by the Cable
Repair Administration System (GRAS), a conventional data base
management system. ACE is activated nightly to study the day's
reports and then send messages on troublespots to the ACE user via
electronic mail.

The main sources of knowledge used to construct ACE were
textbooks on telephone cable analysis, advice from the developers of
CRAS, advice from theoreticians in Bell Telephone Laboratories, and

.~ 1Jusers of CRAS performing the actual analyses. The knowledge base
consists of all the relevant domain-specific knowledge required to
diagnose cable faults. The inference engine controls the deductive
process and is represented in rule form. Both are written in Lisp
and the 0PS4 Production System. The CRAS system provides the data
base. ACE, then, represents a merger of expert system technology

,~. ~.with older data base management technology.

ACE has been field tested since the spring of 1982. Analysts
are reported to be satisfied with ACE' s performance (Vesonder,
et al., 1983).

17

Table 3-1. Examples of Fielded Expert Systems

Name of System Developer Problem Addressed

ACE AT&T Troubleshooting and making
recommendations for
telephone cable maintenance

DENDRAL Stanford U. Identifying chemical

compounds

MACSYMA M.I.T. Performing differential and

integral calculus

MYCIN Stanford U. Diagnosing and treating

infectious blood diseases
1

ONCOCIN Stanford U. Monitoring out-patient

oncology treatment >-
PROSPECTOR SRI Finding mineral deposits

PUFF Stanford U. Assessing respiratory
function

SOPHIE Bolt Beranek Tutoring electronics
and Newman, Inc. troubleshooting

XCON Digital Equipment Configuring computer
Corporation installations

'At present, MYCIN is not used on wards, primarily because of its
incomplete knowledge of the full spectrum of infectious diseases
(Barr, et al., 1982, vol. 2, p. 192). The system is included
because it is fully developed; it has compared well with physicians
in formal evaluations, and because its domain-independent core (that
is, EMYCIN or Essential MYCIN) has been used to build other systems.
An example of a non-medical application that was developed using
EMYCIN is SACON. SACON advises structural engineers on the use of a
very coaplex computer program, MARC, which simulates the response of
mechanical structures to various load conditions.

.2

4. 18

3.2 DENDRAL

organic compounds by using formulae and mass spectrograms. DENDRAL

enumerates every possible organic structure that satisfies the
constraints apparent in the data and rapidly eliminates implausible
structures. Because DENDRAL systematically generates all plausible
structures, it finds even those structures that humans overlook.
DENDRAL surpasses all humans at its task (Hayes-Roth, et al., 1983,
p. 9) and is consulted by chemists from all over the world.
DENDRAL, about sixteen years old, is a Stanford project (Lindsay, et
al., 1980).

3.3 MACSYMA

MACSYMA is a large, interactive computer system designed to
solve a variety of mathematical problems. It performs algebraic
simplification and it does differential and integral calculus
symbolically. MACSYMA is very efficient and produces high quality
results, and its performance excels that of most human experts.

MACSYMA is used extensively by engineers, mathematicians, and
physicists. Many of the users spend a substantial portion of every

4, day logged into the system. MACSYMA runs on a Digital Equipment
Corporation (DEC) computer system at MIT, and is accessible via the
ARPANET. A version for DEC's VAX computer is known as VAXIMA; a
version programmed in Lisp is known as Edward (Mathlabs Group, 1977).

3.4 MYCIN

MYCIN is one of the oldest and best known expert systems. It
is designed to provide computer-based medical consultations for
infectious diseases. Specifically, MYCIN can diagnose and recommend
therapy for blood infections and meningitis. The system was
developed at Stanford University as part of the Heuristic
Programming Project and was completed in 1969.

MYCIN interviews the physician-user for information about the
patient. For example, it may ask whether the physician has obtained
positive cultures from the site at which the patient has an

* ~. infection. It couples this information with information from its
knowledge base to infer a diagnosis and recommend a therapy.
Medical knowledge is encoded as production rules. Conclusions are

i% 19

asserted with an associated confidence factor. M1YCIN is able to
explain its reasoning and the user can add or modify rules. MYCIN
uses approximately 450 rules.

MYCIN is equal in performance to nationally recognized experts
in diagnosing blood infections and meningitis. However, it is not
actually used on the wards since it lacks knowledge about related
diseases. Thus, it has limited value for routine clinical use
(Shortliffe, 1976).

3.5 ONCOCIN

ONCOCIN is an oncology decision advice system that was
developed at Stanford University. The system monitors the treatment
of oncology out-patients on experimental treatment regimens.
ONCOCIN and PUFF are the only two medical expert systems that are
used routinely by physicians (Clancey and Shortliffe, 1984, p. 16).
The system is actually a set of programs, one of which is a
rule-based reasoner that encompasses the necessary knowledge of
cancer chemotherapy. The system also includes an on-line data base
of patient information (Shortliffe, et al., 1981).

3.6 PROSPECTOR

PROSPECTOR is a computer-based consultation system developed at
SRI International to assist a professional geologist in the early
stages of investigating the exploration site or "prospect." The
system makes probabilistic interpretations of soil and geologic
data.

The program contains a knowledge-acquisition system (KAS) that
facilitates the acquisition of knowledge by prompting the user.
PROSPECTOR matches data from a particular situation against models
that describe a large number of disjoint classes of situations.

) These models are formal descriptions of the most important types of
ore deposits. The data are geological observations. Since these
data are assumed to be incomplete, conclusions are expressed as
probabilities or degrees of match. Inference rules specify how the
probability of one assertion affects the probability of another
assertion.

The system performs well. PROSPECTOR has predicted several
deposits whose existence was subsequently confirmed by drilling,
including a molybdenum deposit worth $100M1 (Duda, et al., 1978).

20

I
3.7 PUFF

The basic task of PUFF is to interpret the results of pulmonary
function tests. It produces a diagnosis and a set of
interpretations and conclusions similar to those a physician would
produce if given the same initial data.

PUFF is in actual use at the Pacific Medical Center Hospital in
San Francisco. The system serves as a practical assistant to the
pulmonary physiologist. Each PUFF report is read by a physician.
More than half of the reports are accepted without any change and
most of the remaining reports require only a few additional comments
(Miller, 1984).

PUFF was developed from research done on the MYCIN system, and
it was built using a generalization of MYCIN known as EMYCIN or
Essential MYCIN (van Melle, 1979). (EMYCIN is discussed as a system
building tool in section 3.) PUFF is made up of the EMYCIN programs
and a knowledge base about pulmonary disease. PUFF employs a set of
about 55 rules (Kunz, et al., 1978).

3.8 SOPHIE

SOPHIE (a SOPHisticated Instructional Environment) is a system
for intelligent computer assisted instruction (ICAI) in the context

of a simulated electronics laboratory. The system was developed at
Bolt Beranek and Newman, Inc., over more than a decade ago.

The problem for the student is to diagnose the faults in a
malfunctioning piece of equipment. The student acquires
problem-solving skills by trying out ideas rather than by
instruction. SOPHIE randomly selects a fault and inserts it into a
simulation model of the circuit. The student is given a diagram of
the circuit and begins troubleshooting by performing measurements.

?In addition to domain-specific knowledge for problem-solving,
SOPHIE contains numerous domain-independent inferencing mechanisms
to answer the student's questions, criticize student's hypotheses,
and suggest alternative hypotheses. The system also judges the
student's suggestions for new measurements.

Extensions to SOPHIE produced SOPHIE-If. This system includes
'a troubleshooting game with two teams of students, and an articulate

explainer. The explainer can articulate its deductions and provideEglobal strategies to guide troubleshooting (Brown, et al., 1974).

21

3.9 XCON

One of the best known expert systems in use is a four-year-old
program developed by groups at Carnegie-Mellon University (CMU) and
the Digital Equipment Corporation (DEC) to configure its VAX
computer. Most VAXs are custom tailored. This tailoring poses
time-consuming, complex configuration problems.

XCON plans arrangements of components for VAX super-minicomputer
systems and PDP. For example, XCON checks for correct cable lengths
and required memory size. It also prints a diagram to assist with
assembly.

XCON was built using a software tool called OPS5 (see section
4). XCON's knowledge base grew over time as rules were added,
deleted, or modified as needed. From an original 200 rules, the
system now contains between 3,000 and 4,000 rules.

According to trade literature, XCON configures the most complex
order in less than one minute. The system is less error-prone than
most DEC technicians (Abramson, 1984).

22

22

SECTION 4

TOOLS FOR BUILDING EXPERT SYSTEMS

Until recently, almost all expert systems were built from
scratch, usually as part of a research effort. This required the
builder to be highly trained in the concepts and techniques of
artificial intelligence. Such people are scarce and, when found
outside academia, usually very expensive. The shortage of
experienced personnel for building expert systems has limited the
number of expert systems that can be developed.

Over the past few years, tools for building expert systems have
begun to make their appearance, first from the research community
and later from the commercial world. The use of tools has
simplified the development of expert systems in some cases. They
have proven especially useful in the building of quick, early
prototypes of expert systems. However, these tools have also
attracted overblown expectations as to what can be accomplished with
them. Some vendors even claim that their tools make it possible for
people with no background in AI to develop expert systems. It is no
more realistic to believe that a good tool can replace experience in
expert system development than in any other specialized software
area. For example, a novice should not be made responsible for
building a corporation's financial data base no matter how good a
data base management system is available.

However, expert system building tools can be valuable for theI right applications under the right circumstances. Choosing an
appropriate tool for building a particular system is both a
difficult and crucial task. This section is meant to highlight some
of the considerations in choosing a tool, but is not intended to
provide definitive guidelines. This section will examine the tools
available for expert system construction, and their features. A
subset of these tools is described briefly.

Before beginning the discussion of specific tools, the role of
tools will be discussed in section 4.1. A brief overview of the
languages of artificial intelligence will be presented in section
4.2. Nearly all the tools have been written in one of these
languages, and use of the tool often requires knowledge of the
underlying language. Specific tools are described in section 4.3.

23

(.V

pA

4.1 THE ROLE OF TOOLS IN BUILDING EXPERT SYSTEMS

There are three approaches one can take in building an expert
system. The first approach, that of the past ten years, looks at
the expert system program as a research project that requires
individuals well schooled in the concepts of artificial
intelligence. Nearly all expert systems to date have been built
this way and nearly every such project has uncovered new Al
techniques to make the research approach worthwhile.

The second approach begins with an existing expert system. Ano
attempt is then made to separate the application specific part of
the system from the rest of the system. This approach may be very
useful if the system to be built is similar in nature to an existing
system. For example, the nature of the problem of medical diagnosis
is not very different from the nature of the problem of electronic
system diagnosis. The purpose of a diagnostic system is to infer
the cause of a problem given its symptoms. On the other hand, two
systems for weapons analysis will not be similar if one does
logistics planning and one does effectiveness analysis. Although
these two systems have the same domain, that is, weapons analysis,
they address different problems.

The second approach suggests still another approach; namely, to
begin with a set of tools designed to aid in building expert
systems. Recently, both universities and private corporations have
generalized their research into tools for the development of expert
systems. These tools are to expert systems much as Adabas and its
contemporaries are to the field of data bases. They offer the basic
constructs necessary for building a system, but they still require
developers to choose the appropriate construct for their
applications, and to gather, organize, and enter all the data and
knowledge upon which the program will act.

4.2 FEATURES OF EXPERT SYSTEM BUILDING TOOLS

Much as there are different data base organizations--relational,
* hierarchical, network--whose use depends on the relationships among
.2 the data and particular goals of the given application, so, too, in

expert systems are there a number of different technical approaches
available for reasoning in the inference engine. The popular
approaches so far developed include forward chaining and backward
chaining. How these are implemented is not important at this point;
what is important is to realize which approach is more appropriate to

* a particular type of problem. Forward chaining starts with the
evidence or current facts and reasons forward until it reaches a
final goal state. Forward chaining is useful in problems where there

24

Iare many possible acceptable but rather different solutions to a
problem. For example, in design problems where the nature of the
problem is to configure objects under constraints, there may be many
acceptable design solutions that satisfy the constraints. An example
of a system that is a classic forward-chainer is Rl, later known as
XCON, a system for configuring VAX computer systems from customer
requests.

Backward chaining is another inference mechanism that starts
from a possible conclusion and works backwards to see if it can
justify that conclusion based on the starting evidence. Backward
chaining is useful in problems where there is only one acceptable
solution (or relatively few solutions) to a problem. For example, in
diagnosis problems the purpose of the analysis is to find the cause
of the problem so that a cure may be effected. An example of a
system that is a classic backward-chainer is MYCIN, a system designed

Rto diagnose and treat infectious blood diseases. These approaches
are by no means exclusive or exhaustive. Most tools currently
available use them in conjunction with one another and with other
methods as well.

In addition to the inference engine, an expert system contains a
method for knowledge representation. The most common method is to" . use rules, that is, a series of if-then clauses that are executed, or

I fired, when they are ready (see section 2). Rules contain domain
knowledge and the "rules of thumb" that experts tend to use as aids
to problem solving.

A strategy for which rule will be chosen from among those ready
to fire is an important part of a system. As explained in section 2,
such a strategy performs what is known as conflict resolution. Some
strategies favor rules with the most complex antecedents; other
strategies favor rules with the most recently used antecedent; other
strategies simply use the rule that appears first in the data base.

Some systems allow the builder to add a certainty factor to each
rule. A certainty factor is a measure of the expert's confidence in
the validity of the rule. Some tools allow the builder to choose
from among a number of different control strategies or to implement
one of the builder's own design. Full control flexibility may be
useful in some applications, but unnecessary in others.

In conjunction with rules, some tools allow knowledge to be set
up in a network of relationships (see section 2). Knowledge
components are allowed to inherit features from related components so
that information does not have to be repeated for every component

25

% .',..

in the system. In such a system, to say that a Camaro is a kind of
car would mean, roughly speaking, that things the system "believed"
about cars it would also "believe" about Camaros. Such systems use
semantic nets or frames as their knowledge representation method.
However, even within the frames, rules are normally applied to
develop the inferences necessary to solve the problem at hand.

Expert system building tools are constructed with one or more of
*4 these inference mechanisms and knowledge representations, just as

N data base building tools are built around a particular data
organization. In addition, other useful facilities may be supported
by the tool.

Some tools provide an explanation facility. Such a facility may
range from merely explaining why the system chose a particular rule
to fire from among a group of rules that were ready to fire, to
explaining how the system came up with a particular solution to a
problem.

Some tools support what is known as active values. These have
the following role. The builder can specify that when a particular
value in the system changes, a builder-defined function should be run
or activated. For example, each time information is entered or is
inferred by the system causing a variable named "temperature" to
change, a function might be run to update a thermometer display.

Some expert systems incorporate what might be thought of a-. a
kind of "learning." In such a system, the "beliefs" the system has
inferred while trying to solve a particular problem are added to its
knowledge base permanently, not just for the run of the problem. In
this way the system gets Itsmarter" each time it attempts to solve a
problem. The major difficulty with such a scheme is that "facts" may
change over time. For example, the fact "Iran is an ally" was true
but is no longer true. Some expert system tools support what is
known as truth maintenance or belief revision or non-monotonic
reasoning. An expert system that might find such a facility useful
is one that is expected to change over time as new information, or
perhaps more refined information, is added to it. "Beliefs" that
were developed based on older information must be brought into
question when new information that contradicts or qualifies the old
information is introduced into the system. In such a system the
chain of reasoning that led to a "belief" must be remembered, so that
"beliefs" that were based on the old information can be tracked down

-~ and removed from the knowledge base.

Certainly an important aspect of any computer system is the user
environment. Many of the recent tools have elaborate user
interfaces. They may use a "1mouse," they may use a natural language

26

p4

for entering information, and they may employ icons, windows,
graphics, and a natural language for displaying information.

Another consideration in choosing a tool should be how well the
tool is integrated into its environment; that is, how easily can a
user augment or alter its behavior. At a minimum, for example, can a
builder-defined Lisp or Fortran function be called by the system?

It is also important to consider the amount of support for the
use and maintenance of the tool tae purchaser can expect to receive.
In dealing with expert systems, questions of support are vital due to
the immaturity of the product. Research tools are not known for
their support to naive users. Many tools were developed as doctoral
theses and have since been augmented as necessary. When a copy of
such a system is acquired, it is the user's responsibility to keep it
current and write all the necessary support software to make it
useful. The advantage of these systems, however, is their low cost.
They are either free or available for a small licensing fee. On the

bother hand, some of the commercial products offer classes and
consultation included in the price of the system, but are expensive.

Another important consideration in choosing a tool for building
an expert system is who is going to be the user or what is the system
builder's background. Is the builder a researcher in artificial
intelligence technology? Does the builder have previous experience
in building an expert system? Or is the builder a domain expert who
is serious about learning how to use expert systems technology? Many

of the tools advertise that they can be used by anyone with no
K: previous experience in anything. Obviously, the buyer should beware.

Finally the reader should be strongly reminded that no one of
the tools listed here or elsewhere will meet everyone's needs at all
times. Nor is that likely to change in the near future (consider the
number of different programming languages in existence). Some of the
features of the tools discussed below may be useful in solving
certain problems and absolutely useless in solving others. The
problem must be analyzed carefully to determine which features would
be critical, which would be useful, and which would be useless. In
what is to follow, we will present a number of different tools that
are currently available. It is not an exhaustive set. However, we
believe it is a reasonably representative set.

4.3 PROGRAMMING LANGUAGES FOR WRITING EXPERT SYSTEMS

We begin our discussion of expert system tools with a discussion
of three of the most popular artificial intelligence languages: Lisp

27p)
4.•. A

(list-oriented), Prolog (logic programming) and Smailtalk
(object-oriented). The commonality of these languages is their
capability for symbolic manipulation.

4.3.1 Lisp

Lists, trees, and networks are useful data structures for
representing complex relationships between objects. Lisp deals with
such data structures as primitive entities; they come naturally to
Lisp. Another important strength of Lisp is that programs may be
treated as data and data may be treated as programs. Given a certain
input, a Lisp program may use that input to create a function and
then proceed to execute that function in the same Lisp world. This
capability is usually considered a flaw from a software engineering
point of view. But it allows the programmer to handle what is
expected to happen in the run of a program in a very flexible way.
The interactive program development environment has also contributed
to its popularity. Traditional computer hardware was designed to
support "number crunching" applications. Lisp did not perform
particularly well on such machines and, therefore, acquired a
reputation for being slow and expensive to run because it used a lot
of system resources. Recently, computer systems have appeared on the
market whose logical architecture is specifically designed to support
the economical development of artificial intelligence programs. Many
of the expert systems built to date have been written in Lisp, even
though Lisp has no built-in inference engine.

4.3.2 Prolog

TeProlog describes known facts and relationships about a problem.

TeProlog program consists of a set of clauses, in which each clause
is either a fact about the given information or a rule about how the

* solution may relate to or be inferred from the given facts.

There are a number of reasons for the growing interest in
Prolog. The inference engine for backchaining is a part of the.4 language. Prolog can be used as a relational data base query language
because it supports a subset of predicate calculus. As in Lisp, it
is possible to treat data as program, and program as data. An
interactive program development environment is provided. Prolog also
seems to hold promise to support massively parallel computLtion.
This is one of the aspects of Prolog that led the Japanese to become
interested in exploring its use for 5th generation architectures.

28

In.3Smalltalk teporme iie h ol noojcs

In Smalltalk, teporme iie h ol noojcs
Each object maintains its own data representation and processing code
hidden from all other objects, and is thus independent of them.
Objects may request information or processing from other objects
through messages. Objects can inherit capabilities from other
objects within the same class, so that functions do not have to be
copied for every type of object. For example, an object representing
an airbase could receive messages requesting allocation of aircraft.
The methods by which it performed this function would be hidden from
all other objects, the object would simply return the final answer.
Some of its methods, such as determining the distance to a
destination, may, in turn, be inherited from another object class,
such as that of stationary physical entities. Object-oriented
programming supports modular programming and reusable code.

4.4 DESCRIPTION OF TOOLS

Several expert system building tools are described in this
section. The description of each tool begins with an overview
paragraph and follows with paragraphs on technical content, userk facilities, and aids for the knowledge engineer.

The expert system building tools that are discussed, plus some
additional tools, are listed in table 4-1 with their manufacturers.
Some of their key features are summarized in table 4-2. This list is
not exhaustive, but does contain many currently available tools. It
is intended to give examples of the more popular systems that are
available ranging from free unsupported university tools to $60,000
commercially supported tools. Two new tools, ART and SRL, were still
in beta testing as of the time information was collected and will not
be discussed here. Most of the systems described below are written
in Lisp.

4.4.1 EMYCIN

EMYCIN or Essential MYCIN was developed at Stanford in the late
1970s, and along with OPS5 (see below) is a grandparent of expert

~iJ system building tools. It was generated from an expert system,
MYCIN, that addresses the problem of diagnosing and treating
infectious blood diseases. (See section 3 for a description of
MYCIN.) EMYCIN contains all of MYCIN except its knowledge of
infectious blood disease and can facilitate the development of
diagnostic applications.

29

Table 4-1. Expert System Building Tools: General Information

Developer Price Computers
($)

--

EMYCIN Stanford Univ. < 500 VAX VMS/UNIX
MRS Stanford Univ. < 500 Symbolics, VAX
OPS5 Carnegie-Mellon < 500 VAX VMS, Symbolics,
Xerox
YAPS Univ. of Maryland < 500 VAX UNIX
ROSIE Rand Corp. < 500 VAX UNIX, Xerox
LOOPS Xerox < 500 Xerox
AGE Stanford Univ. < 500 PDP-10/20, Xerox

KES Software Arch. & Eng. 25K VAX, Apollo, etc.
TIMM General Research 40K IBM, DEC, etc.
TIMM-PC General Research 10K IBM PC-XT
DUCK Smart Systems Technology 6K VAX, Apollo, Xerox,

Symbolics
KEE IntelliCorp 60K Xerox, Symbolics
S.1 Teknowledge 50K Xerox
M.1 Teknowledge 13K IBM PC
Expert-
Ease Intelligent Terminals, Ltd. 2K IBM PC

Source: The information in this table was gathered from trade
literature and conversations with manufacturers and
developers. We have attempted to be as accurate as
possible.

Note: Cost figures were current as of September 1984. Most
companies offer substantial volume discounts and some
prices include training.

31

Table 4-2. Expert System Building Tools Characteristics

Back-chain

Forward-chain

Inheritance
1..

Active value ?.?

Certainty factors

Belief revision

Explanation

Flexible control

Integrated environment

Course

Guidance

Al background required ?

Key: f-Yes

D-"No

E -Some or partial

"-- Insufficient information
supplied by the developer

31

EMYCIN is a classic backward-chaining rule based system. All
control is done through the firing of rules in a goal directed
manner. As such, it initially selects one goal conclusion, analyzes

- all rules that verify that conclusion, then tries to prove the
antecedents to that rule. Proving the antecedents usually involves
establishing them as subgoals and trying to find rules that have them
as conclusions. In EMYCIN this process goes on until the original
goal conclusion has been shown to be substantiated by the facts or
there are no rules that can fire. This exhaustive search is a
conservative approach, both because the rules and facts areA 4

probabilistic in nature and because in life-threatening situations it
is best to have as much evidence as possible to back up a conclusion.
Knowledge is stored as rules.

EMYCIN is to be used in a Lisp environment and can make calls to
Lisp. EMYCIN has an explanation facility that gives a trace of why a
rule was fired or why a question was asked. This trace shows the

V procession of rules fired from the initial goal. A rule editor is
also provided for checking consistency among rules and for checking
for valid syntax. In addition, there are system-specific tracing and
debugging tools. As is customary with university developed products,
EMYCIN has no support, but it does have a detailed user's manual.

4.4.2 MRS

MRS was developed at Stanford in the early 1980s. It is
unsupported and available for a nominal fee. MRS provides a toolbox
for an experienced knowledge engineer to build a custom expert
system. It is not a complete system, but is intended to be inserted
in Lisp code as function calls. In its tool kit are mechanisms for
backward and forward chaining with optional saving of intermediate
conclusions and truth maintenance to handle non-monotonic reasoning
(reasoning under retraction of earlier beliefs). MRS provides the
builder with a lot of control over the strategy used for conflict
resolution and searching. For example, the builder can choose from
depth-first, breadth-first, or best-first search strategies, or can
design other strategies. MRS supports these capabilities by using
meta-knowledge, or knowledge about how MRS itself works. The
knowledge is entered in the form of rules.

Since MRS was developed as a research project concerned with
knowledge representations, astal concern was given to a friendly

knowedg repesetatinslittlecoerwagintoafidl

system builder environment. Knowledge entry and editing is
-2 accomplished through the standard Lisp facilities of the particular

machine being used. MRS has a justification facility to show the
rules that justify a conclusion the system has reached.

.32

V

4%

4.4.3 OPS5

OPS5 is the most widely used expert system building tool. It
was the basis for XCON, the DEC VAX configurer that is one of the
best known commercial expert systems. OPSS's simplicity has allowed
it to be ported to nearly all computers. Although it has no
elaborate input/output or explanation facilities, it remains popular
because of its straightforward inference mechanism and relatively
large user base. OPS5 is available both in unsupported university
versions and in well supported systems from commercial firms.

Just as EMYCIN is the classic back-chaining system, OPS5 is the
classic forward-chaining system. Its inference strategy is quite
simple. It contains a data base that contains the known state of the
world as objects with associated attribute-value pairs. All rules
are searched to find those whose antecedents are all known to be
true. If more than one rule is found to be applicable, a conflict
resolution strategy is then invoked to select a single rule. The
chosen rule is fired, its conclusions instantiated into the data
base, and the process repeated until some goal is reached or no rule
can fire. Builder defined functions may be called from within OPS5.

4.4.4 YAPS

YAPS, which stands for Yet Another Production System, is an
adaptation of OPS5 from the University of Maryland. It has the same
structure as OPS5 but overcomes some of its shortcomings by allowing
more complex structures in the data base.

4.4.5 ROSIE

ROSIE, the acronym for Rule Oriented System for Implementing
Expertise, represents Rand's entry into the world of expert system
building tools. It, too, is available ve':y inexpensively and is

7unsupported. Rules may be entered in an English-like natural
language as opposed to a Lisp-like structure (unlike OPS5, whose
syntax is much like Lisp).

ROSIE's inference engine uses pattern matching to access its
rul," . Its commands are coded in structured English-like sentences,
giving it the appearance of a relational data base that analyzes and
acts on the rule base. The English statements also give a
procedure-oriented style to rule access. There is a concept of
inheritance in ROSIE. It also has the ability to communicate with

33

other systems or programming languages. It has no explicit
explanation facilities. ROSIE uses the Interlisp editor for

knowledge base entry.

4.4.6 LOOPS

LOOPS was developed by researchers at Xerox Corporation's Palo

Alto Research Center. It is a complete package designed to run on

the Xerox Lisp Machine. Although LOOPS is currently not a Xerox
product, it is made available to Xerox Lisp machine owners for a

nominal fee, and training classes are available for it. LOOPS

currently supports only a forward-chaining inference engine.
Object-oriented programming is supported, as well as data-oriented

programming, via an active value mechanism.

The LOOPS environment makes use of the facilities provided by

its host, a Lisp machine. The user enters data via the mouse and its

related menus and windows. Icons and bit-mapped graphics, along with

text, are used to display information. Questions can be asked at any
time, either freely or through menus.

Debugging is provided with the Lisp machine's facilities.

During any portion of the run, the system can be halted and
investigated with the debugger, which uses textual and graphic

displays. Additionally, windows can be created, allowing the
programmer access to source code or to other files while the display

remains on the screen.

4.4.7 AGE

AGE, short for Attempt to Generalize, is a collection of tools
for building expert systems. AGE is an experimental system being

developed by the Heuristic Programming Project at Stanford
University. AGE is a research tool that is still under development.
The AGE-l system is written in InterLisp and currently runs on the

DEC PDP-10 and DEC system-20 computer systems. A separate AGE-I.5
system is available for Xerox 1100 series workstations. AGE is
available for a one time, royalty free distribution fee of $500.00.

AGE has isolated several inference, control, and representation
techniques from previous expert systems and has reprogrammed these
modules for domain independence. AGE is a tool for building expert
systems but is itself an expert system since it guides users to use

34

a, *j

the modules to construct their own expert systems. It supports both
backward-chaining and forward-chaining inferencing, as well as
reasoning with uncertainty.

4.4.8 KES

There are three distinct inference engines in KES (Knowledge
Engineering System) from which the designer can choose. One is a
backward chainer, one applies Bayes' theorem, and one performs
hypothesis and test. They can all handle incomplete and uncertain
knowledge. Knowledge is stored in an attribute hierarchy schema.

The knowledge engineer uses a standard editor to enter the
rules, attributes, and actions. The rules are compiled before the

) KES system can be run. The rules are examined for problems such as
conflicting rules and unused decision attributes. The actions are
the procedural portion of KES telling the system when to collect
information and what goals to try to solve. The system then
generates any subgoals or other actions necessary to solve the given
problem. KES is designed to run on a VAX. Another version (called
MKES) is available for an IBM PC.

4.4.9 TIMM

- - TIMM is primarily a decision support tool. Its knowledge is
entered through situation formulations from which it deduces rules of
inference. A domain expert provides a situation formulation by
specifying values for attributes and the decision that is to be
returned by the expert system under these circumstances.

If TIMM is not provided with enough situation formulations to
detect a pattern of differentiation, it will present a set of
attribute values to the user and ask for a decision selection under
these circumstances. TIMM checks the knowledge base for consistency
and completeness to ensure there are no conflicts. The rules are

,- maintained in a frame-like system, allowing for inheritance and the
use of daemons (functions called to produce desired side effects).

The end user of the expert system is asked multiple choice
questions. Depending on the user's choice, either terse or verbose

English statements will be presented. TIMM has no direct explanation
facility. TIMM can be set up to link to knowledge bases in other

S.., TIMM systems so that a decision process can be broken down into
smaller pieces.

35

hN

i .jU. ,.j ? %

4.4.10 DUCK

DUCK provides a logic programming environment within a Lisp
environment. It is written in NISP, a generic Lisp, and is thus
portable to many machines.

DUCK's inference engine uses both forward chaining and backward
chaining within its logic programming approach. The combination of
forward and backward chaining takes place concurrently, depending on
the current state of the inferences. Such a combination is called
opportunistic scheduling, a technique from recent research. The
designer also can give direction as to how the search process should
take place. In addition, the builder can write Lisp functions to be
called by DUCK at any time.

Interaction with DUCK is via standard Lisp processes. DUCK's
explanation facility allows the user to request partial deductions
and watch the execution of the steps through the knowledge base.
Debugging and knowledge entry are done through whatever LISP
debugging capabilities are available on the specific machine.

4.4.11 KEE

KEE, the acronym for Knowledge Engineering Environment, promises
very strong customer support. Of its $60,000 purchase price, $30,000
is for training, phone and on-site consultation. KEE runs on both f

the Xerox and the Symbolics Lisp machines. It has a sophisticated,
quite friendly expert system building environment that makes
extensive use of the Lisp machine's windows, menus, bit-mapped
graphics, and "mouse."

KEE's inference engine contains both a backward chainer and a
forward chainer. It gives the designer the ability to call builder
defined Lisp functions through its active value mechanism. It does
not have a built-in mechanism to handle uncertainties about
knowledge. Knowledge and rules are stored in frames that have
multiple lines of inheritance. rhis feature gives KEE an object-
oriented flavor. The frames are executed according to both the needs
of the inference engine and scripts and menus written by a designer.

KEE provides a debugger. During any portion of the run, the
system can be halted and investigated with the debugger which uses
textual and graphic displays. Additionally, windows can be created,
allowing the programmer access to source code or other files while
the display remains on the screen. Knowledge is entered through the
Lisp editor.

36

4.4.12 S.1

S.1, a product of Teknowledge, has been available for about a
year. It is highly integrated into the architecture of the Xerox
Lisp Machine. It makes use of all of the features for windows and
graphics that this machine provides. Courses and telephone support
are available.

The inference engine of S.1 is a backchainer that handles
uncertainties. Knowledge may be represented through both frames and
rules, and certainty factors may be associated with rules. Builder
defined functions may be called from within the S.1 environment. It
has a full explanation facility that will respond to questions of why
it has asked questions of the user and how it has reached its
conclusions. Knowledge is entered through the Lisp editor.

4.4.13 M.1

M.1 is a member of a family of knowledge engineering products
developed by Teknowledge. (See also S.1, above.) M.1 was designed
as a software tool for exploring practical applications of knowledge
engineering on an IBM PC. The system was designed for developing
small scale operational systems where small is defined as an
application that requires up to 200 knowledge base entries.

M.1 has a backchaining inference engine and a capability for
establishing a set of high priority goals. Certainty factors can be
associated with rules. There is a capability for segmenting
knowledge bases.

The price of M.1 is $12,500. The price includes the tuition for
one participant in a four-day hands-on training course. An extensive
reference manual is supplied. In addition, several annotated sample
knowledge systems are provided on a disk. These systems can be
demcnstrated or modified.

In building a system with M.l, an English-like language is used
to state facts and rules about the chosen application. A knowledge
base is then created using any standard text editor. After the
knowledge base is developed, M.l can engage the user in a
question-and-answer dialogue and use the knowledge base to provide a
recommendation or conclusion. The user can request explanations
during or after the reasoning process.

37

pV
.4

4.4.14 EXPERT-EASE

Expert-Ease is primarily a decision support system. It
synthesizes into rules situation formulations that are provided by
the builder. A domain expert provides a situation formulation by
specifying values for attributes and the decision that is to be
returned by the expert system under these circumstances. Expert-Ease
makes use of a spreadsheet format for collecting knowledge from the
builder. It collects data from end users by guiding them through a
series of multiple-choice questions.

The system runs on an IBM PC and on certain IBM compatible
machines. No support is available, but the builder/user's manual is
extensive and well written. However, only small applications of very
limited types are suitable for this tool.

38

SECTION 5

DARPA'S STRATEGIC COMPUTING PLAN

In October 1983, the Defense Advanced Research Projects Agency
(DARPA) released its Strategic Computing Plan' (SCP). The Plan sets
forth an important new program to use recent advances in artificial
intelligence, computer science, and microelectronics to create from
FY84 through FY93, a new generation intelligent computing technology
that will have unprecedented capabilities.

This section states the goals (section 5.1) and gives an
overview of the SCP (section 5.2). Much of the SCP is concerned
with extending the capabilities of expert systems technology and
developing increasingly sophisticated expert systems for military
applications. Expert systems technology is discussed in section
5.3. The major applications of interest, namely, autonomous
vehicles, pilot's associates, and battle management systems, are
described in section 5.4. The requirements for advanced hardware
are summarized briefly in section 5.5. The management, schedule,
and cost of the program are summarized in section 5.6. Section 5.6
also describes the Air Force's plans to coordinate activities
described in the Air Force Master Plan for Research and Development

,in Artificial Intelligence with the SCP.

5.1 GOALS

The overall goals of the SCP are "to provide the United States
with a broad line of machine intelligence technology and to
demonstrate applications of the technology to critical problems in
defense" (SCP, p. ii). The plan states that "this technology
promises to yield strong new defense systems for use against massed
forces, and thus to raise the threshold and decrease the chances of
major conflict" (SCP, p. 10).

* 'DARPA, Strategic Computing: New-Generation Computing Technology-A
Strategic Plan for its Development and Application to Critical
Problems in Defense, 28 October 1983.

39

4n

5.2 OVERVIEW OF THE SCP

The SOP is an ambitious program to create a new generation of
intelligent machine technology by building on recent advances in
artificial intelligence, computer science, and microelectronics.
The Plan extends from FY84 through FY93. Program costs have been
estimated at $300M for FY84 through FY86 with out-year funding to be
determined as the Plan progresses. To accomplish its Program, DARPA
will fund and coordinate research in government agencies,
universities, and industry. DARPA will manage the Plan with close
coordination with the Under Secretary for Defense, Research, and
Engineering (USDRE) and the military services.

The program focuses on military applications that are
challenging enough to stimulate technology development.
Applications "pull" the creation of the technology base. That is,
applications generate requirements for intelligent functions.
Intelligent functions drive the requirements for system
architectures whose requirements, in turn, drive the requirements
for microelectronics.

Specific applications addressed in the Plan are autonomous
vehicles, pilot's associates, and battle management systems. (Each
is described in section 5.4.) These systems would be able to
perform intelligent functions such as understanding natural language
expressions, information fusion, machine learning, and planning.
These systems would interact with their users through vision and the
generation of visual images, and speech recognition and production.

Each system would contain one or more expert systems that will
require significant developments in expert systems technology.
Since expert systems are the subject of this paper, the technology
is discussed in some detail in section 5.3. Briefly, these systems
would be characterized by very large knowledge bases containing from
10,000 to 30,000 rules and ultra-rapid processing speeds. By
comparison, the largest operational expert system described in
section 2.4 (XCON) has less than 4,000 rules with most systems
having fewer than 500 rules. Currently, operational expert systems
do not have requirements for real time processing. The applications
in the SOP, however, will require processing speeds ranging from 1/3
times real time to 5 times real time speeds for simulations in
dynamic settings. Finally, some applications will require multiple
coordinating expert systems. There are no existing operational
systems that are coordinated.

For the development of expert systems, DARPA envisions the need
V for contractors to have two new types of Lisp machines (see section

3). One will be 10 times faster than current machines and one will

404

'I

be a low power, compact version for use in experiments about
applications. The development will be by industrial manufacturers.
DARPA expects to supply this equipment to contractors beginning in
FY87.

Most of today's computers are still single-processor
von Neumann machines. The underlying technology is not advancing at
a fast enough rate to provide the massive increases in computing
power that will be required. Accordingly, in order to achieve the
desired performance, the Plan calls for exploiting VLSI architecture

A I and massive parallelism. Practical experience with parallel
machines is still very limited.

Weight, space, and power requirements will impose additional
constraints on the systems to be developed. There is a great deal
of interest in small, rugged packages that can be used, for example,
in cockpits. The Plan will rely on effective exploitation of
state-of-the-art microelectronics to meet the requirements for
decreased weight, volume, and power. Silicon technology will
continue to be the mainstay, because of its maturity, but
gallium-arsenide based microelectronics will need to be further
developed for some applications such as those that require
survivable, space-based electronics.

The output of the Plan is expected to be a large array of
intelligent technology that can be applied to diverse military
applications. In addition, DARPA hopes to stimulate massive amounts
of technology transfer into the commercial sector.

5.3 EXPERT SYSTEM TECHNOLOGY

The specific issues relating to expert system technology that
are discussed in the SCP are summarized in this section. According
to Zhe SCP, expert system technology is most appropriate for command
and control operations, situation assessment, and high-level
planning. Since currently the most time-consuming portion of the
process of building an expert system is usually knowledge
engineering, the expert systems component of the SCP emphasizes
knowledge acquisition and representation.

Research in representation will be directed toward building a
capability for very large knowledge bases containing up to 30,000
rules. To put this size into perspective, most current rule-based
expert systems operate with fewer than 500 rules.

Knowledge acquisition will focus on developing facilities for
automated input of domain knowledge directly from experts, text, and

)41

p|

;A

data. Inference techniques will need to be extended to handle the
enormous knowledge bases and will require improved capabilities for
handling uncertain knowledge and inaccurate and incomplete data.

Explanation and presentation systems will require advances in
speech recognition and production to allow for verbal commands and
verbal data input from the user and for task-oriented conversations
with an expert system. The initial efforts will focus on
speaker-dependent isolated word recognition in a noisy environment.
The ultimate objective is to produce a natural language subsystem
that is interactive, that can accommodate multiple users and that
understands streams of textual information.

Most military expert systems will be required to perform in
near real time or in simulations at faster than real time. This
requirement for speed will severely tax current computational
resources. (Currently fielded expert systems operate in domains in
which real time response is not a requirement.) DARPA estimates
that systems will be required to perform at a capacity of 12,000
rule inferences per real time second at rates up to 5 times real
time, and that because of size and cost constraints, the required
architecture will be achieved using VLSI devices and massive
parallelism. The resulting technology is expected to significantly
advance the capability of expert systems, in industrial as well as
military applications.

The SCP contains a detailed description of technological
developments in expert systems to be accomplished from FY84 through
FY93. The major functional capabilities and milestones are shown in
table 5-1. With reference to the capabilities shown in the table,
there are existing expert systems with confidence levels associated
with conclusions. Improvements in sensors will include vision
systems that take in data from imaging sensors and will interpret
these data in real time. Speech input is rare today, but one of the
goals of the SCP is to develop expert systems that accept commands
and data input as isolated spoken words. Ultimately such systems
will understand streams of textual input and will be ablc to carry
on conversations with the user. So far, however, only one or two
systems being developed for battlefield simulations recognize
isolated spoken words as commands.

Finally, we know of no cooperating expert systems. In the SCP,
the Pilot's Associate exemplifies a set of expert systems that will
be designed to cooperate with each other. For example, during an
engagement, knowledge bases can be updated by individual pilots as
tactical events change. This newly "learned" knowledge will be
exchanged automatically among Pilot's Associates.

42

Table 5-1. Strategic Computing Expert Systems Technology
Major Functional Capabilities and Milestones

Capabilities No. Rules No. RIPS' Time Complexity 2

FY86 Situation 2,000 1,000 1/3-1/2 Modest
assessment real time

.P !? with confidence

levels of
conclusions

FY90 Dynamic 10,000 4,000 real time Intermediate

adaptation of
expert
systems with

. sensors and

speech input

FY93 Multiple 20,000 12,000 5 x real High

cooperating time
expert
systems
with
planning

capabilities

'RIPS - Rule inferences per second
2Complexity relates to the context in which the expert system

technology will be employed

Source: DARPA, Strategic Computing, 28 October 1983, Appendix:i iI. 1.4.

43

-1 A

5.4 APPLICATIONS

The overall goals of the SCP will be addressed by focusing on
three specific military applications. They are autonomous vehicles
(section 5.4.1), pilot's associates (section 5.4.2), and battle
management systems (section 5.4.3). These applications stress
different aspects of machine intelligence. Each is thought to
demand an "aggressive but feasible level of functional capability"
(SCP, p. v) and, hence, can provide a "pull" on the new technology.
The applications were selected for their relevance to critical
defense problems.

5.4.1 Autonomous Vehicles

The SCP defines autonomous systems as robotic devices that are
able to sense and interpret their environment, to plan and reason
using sensed data, to initiate actions to be taken, and to
communicate with human beings on other systems (SCP, p. 21).
Examples are "smart" munitions and cruise missiles. Completely
autonomous air, land, and undersea vehicles will require the kinds
of developments addressed in the SCP.

An autonomous land vehicle system is used as an example of a
class of autonomous vehicles. Such a system would require an expert
system for navigation and a vision system. The expert navigation
system must do such things as plan routes using terrain data,
estimate the vehicle's position, and generate momeL-Lo-moment
steering and speed commands. These functions must be accomplished
in real time or near-real time while the vehicle is moving at speeds
of up to 60 km/hr. According to the SCP, such an expert system is
expected to require on the order of 6,500 rules firing at the rate
of 7,000 rule inferences per second (SCP, p. 22).

The vision system must take in data from imaging sensors and
interpret these data in real time to produce a symbolic description
of the vehicle's environment. It is anticipated that an aggregate
computing requirement of 10-100 BIPs (billion equivalent von Neumann
instructions per second) will be needed to accomplish its tasks.
This estimate compares with capabilities of 30-40 M1l's (million
instructions per second) in today's most powerful von Neumann type
computers.

There are also strict requirements for the computing system's
"weight, power, and space. A one to four order of magnitude weight,

space, and power reduction over current computing systems will be
required.

44

5.4.2 Pilot's Associate

The Pilot's Associate is an intelligent system to assist a
combat pilot in the air and on the ground. It does not replace the
pilot. Rather, it complements the pilot by performing special
functions and lower-level chores so that the pilot can concentrate
on tactical and strategic objectives. The Pilot's Associate is
being conceived as a set of expert systems and natural interface
mechanisms to operate in real time. The project is expected to
complement the USAF Cockpit Automation Technology effort.

The Pilot's Associate will be a personal associate to a
specific pilot. It will be trained by the pilot to respond in
preferred ways if, for example, an engine fails during combat.
Other features will include general knowledge about the aircraft,
instructions on advanced tactics from more experienced pilots, and
features for updating the knowledge bases. A novel feature is that
certain classes of newly learned knowledge will be exchanged

* - automatically among Pilot's Associates.

T Nine knowledge bases will be developed for the Pilot's
Associate. They are the aircraft/pilot, tactics and strategy, enemy
aircraft, communication, geography, navigation aids, the mission,
enemy defense, and friendly forces. The knowledge bases will be
significantly larger than any previously constructed. They will
contain several thousand rules that will have to be processed
perhaps 100 times faster than rates that are attainable with current
technology.

5.4.3 Battle Management System

A Battle Management System (BMS) is being conceived as a
large, sophisticated expert system to aid in the management of
large-scale defensive engagements. It could be integrated into
various other defense systems on land, water, or in the air.

The BMS would interact with the user at a high level through
speech and natural language. It would display a detailed picture of

L the battle arena, including force disposition, weather forecast, and
.~ -~so forth. It would generate hypotheses about possible enemy intent,

assess the likelihood of each possible action, prioritize th3se
according to their relative likelihood, and explain its
prioritization. Using its knowledge bases of own force and enemy
capabilities, it would generate alternative courses of action,
evaluate the likely outcomes of each course of action, and evaluate
the relative attractiveness of each alternative according to
criteria that had been supplied previously.

45

Although the above activities may sound as if the BMS would
perform Bayesian decision analysis, this is not the case. Rather,
it would generate alternatives and project outcomes using a
rule-based simulation operating in faster-than-real time.

The BMS would act as a capable assistant to the commander by
* present ing the information described above and explaining its

reasoning. The commander would select a course of action and then
the BMS would develop and disseminate the operation plan. At the
conclusion of the engagement, the BMS would modify its knowledge
bases based on results. In this way, the BMS would update itself
based on its own experience.

A number of expert systems and a natural language interface
will have to be developed to implement the desired capabilities of
the BMS. The SCP estimates a distributed expert system that will
require approximately 20,000 rules and processing speeds of 10 BIPs
(billion equivalent von Neumann instructions per second). The
natural language system will require a processing speed of about one

* BIP.

5.5 HARDWARE

In order to conduct successful military demonstrations of
these applications, it will be necessary to develop new functional
capabilities for machine intelligence, such as improvements in the
understanding of natural language, signal interpretation, and
information fusion. Although these capabilities are provided by
software, they depend strongly on the underlying hardware and system
architecture for speed and efficiency. Accordingly, a component of
the SCP is a plan for the development of advanced machine
architectures. The SCP also depends on the exploitation of faster,
denser, more radiation-resistant, lower-power devices provided by
state-of-the-art microelectronics.

5.6 MANAGEMENT, SCHEDULE, AND COST

The management of the SCP will be carried out by DARPA.
Within the DOD, DARPA will coordinate closely with USDRE and the
military services. (See next page for a description of activities
planned by the Air Force.) A panel of the Defense Science Board has
also been convened to make recommendations on how best to use the
new technology within DOD.

The SOP is designed to continue through FY93. A summary of
major efforts over the 10-year period for the expert systems

46

technology component was presented in section 5.3. Additional
planning time lines may be found in the appendices to the SCP.

A cost summary is shown in table 5-2. Total costs for the
fiscal years 1984 through 1986 are expected to be approximately $300
million. Out-year funding levels are to be determined by the
progress of the program.

Table 5-2. Strategic Computing Plan Cost Summary in $Millions

FY84 FY85 FY86 FY871 FY88'

Total Military Applications 6 15 27 TBD TBD

Total Technology Base 26 50 83 TBD TBD

Total Infrastructure 16 27 36 TBD TBD

Total Program Support 2 3 4 TBD TBD

Total 50 95 150 TBD TBD

'Out-year funding levels are to be determined (TBD) by the progress
of the program.

Source: DARPA, Strategic Computing, 28 October 1983, figure 6-2,
p. 66.

To ensure coordination between the SCP and related service
programs, the Joint Directors of Laboratories (JDL) has formed a
technology panel on strategic computing (TPSC) as a standing panel
of the JDL. The TPSC is forming seven subpanels to correspond with
our areas of application and the three technology thrusts identified
in the SCP. These subpanels, together with recommended lead
organizations and Air Force members, are shown in table 5-3.

47

TPSC members will work with DARPA's SCP managers to achieve
overall coordination. Technical coordination will be accomplished
by having individual subpanel members interface with SCP thrust
managers.

Table 5-3. Technology Panel on Strategic Computing
Joint Directors of Laboratories Subpanel Membership

Subpanel Recommended Lead Air Force
Organization Member(s)

Battle Management Navy RADC
Pilot's Associate Air Force AFWAL
Autonomous Vehicle Army AFWAL
Space Based System Undecided AFSTC
Architecture Navy RADC &

AFWAL/AA
Microelectronics Army RADC &

AFWAL/AA
Software AI Air Force RADC

Key AFSTC - Air Force Satellite Tracking Center
AFWAL - Air Force Wright Aefonautical Laboratories
AFWAL/AA - Air Force Wright Aeronautical Laboratories

Avionics Laboratory

Source: Air Force Artificial Intelligence Research and Development
Master Plan, 1984, p. 20.

48

I0

SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

This report was written to provide some insight into what
expert systems are and what the current state of the technology is
capable of doing in the area of C3I applications. A second goal was

00 to help potential users of expert system technology understand what
kinds of applications are good candidates for expert system
solutions and to help them evaluate where expert systems could
benefit their programs. In this section, we will review the
important points raised in the paper and summarize our
recommendations to those considering an expert system application.

6.1 CONCLUSIONS

1. Expert systems are intelligent assistants to human decision
makers. They cannot, and are not designed to replace human
experts in all aspects of their jobs.

2. Expert systems are good for solving problems where
algorithmic solutions don't work well.

o where data is fragmentary, incomplete, or fuzzy,
o where solutions require reasoning with uncertain

evidence,
o where there is no single "right answer,"
o where the system will be modified frequently,
o where solutions change with time and context,
o where the system must be highly flexible in the

kinds of questions it can answer,
o where an algorithmic solution is too expensive

-, to run.

3. There are only a handful of operational expert systems,
none performing C31 applications. However, a large number
of C31 expert systems are under development, and several
have shown success in initial testing.

4. Knowledge engineering (knowledge acquisition and
knowledge-based development) is usually the biggest

bottleneck in expert system applications.

5. Building expert systems is an evolutionary process. The
process should begin with a small-scale prototype and go

49

1111111101

through several iterations until a satisfactory version is
achieved. Even after an expert system becomes operational,
it often continues to be modified and enhanced.
Consequently, expert systems do not lend themselves to a
fixed specification design--rather, the specification
should evolve with the system.

6. The use of tools for building expert systems may speed the
development process, especially during the prototyping
stage. However, the value of these tools in implementing
full-scale operational systems is largely untested.
Moreover, a powerful tool is not a substitute for having
some expert system experience within the system development
team.

6.2 RECOMMENDATIONS

For those considering the development of an expert system
application, we offer the following recommendations:

1. Choose the application wisely. Start with a small,
well-bounded problem, ideally in a problem domain where
expert system technology has already been used
successfully. Make sure at least one domain expert is
available and willing to spend a good deal of time helping
to develop the system.

2. Begin with a small-scale prototyping effort early in the
development cycle (certainly within the first year) to
determine the feasibility of the application and to lend
insight into the requirements for the full-scale system.
Be prepared to throw away the prototype and even some of
the early incremental versions of the system. Expect the
development to be highly evolutionary.

3. Allow a long lead time to develop the expert system. Past
experience has shown it takes, on the average, four to five
years to complete an operational expert system application.
The use of expert system building tools may reduce
development time to some extent, but don't count on it.

4. Consider the use of expert system building tools,
especially as a way to get a prototype running quickly.
The tool should be carefully matched to the requirements of
the application, since different tools have widely varying
features. But keep in mind that even with a good tool, the
development team still needs some experience in expert
systems to develop a good expert system.

50

Mil 1:2',. *" .!. , *Cl*

LIST OF REFERENCES

1. B. Abramson, "Applied Al at Digital," The Artificial
Intelligence Report, January 1984, pp. 3-6.

2. Air Force Artificial Intelligence Research and Development
Master Plan, DCS Science and Technology, Headquarters Air Force
Systems Command, May 1984.

3. A. Barr, P. Cohen, and E. Feigenbaum, eds., The Handbook of
Artificial Intelligence, 3 volumes, Los Altos, CA:
William Kaufman, Inc., 1982.

4. J. S. Brown, R. R. Burton, and A. G. Bell, "SOPHIE: A
Sophisticated Instructional Environment for Teaching Electronic
Troubleshooting," BBN Repport No. 2790, Cambridge, MA: Bolt

Z" Beranek and Newman, 1974.

5. W. J. Clancy and E. H. Shortliffe, eds. Readings in Medical
Artificial Intelligence: The First Decade, Reading, MA:
Addison-Wesley Publishing Company, 1984.

6. DARPA, Strategic Computing, Arlington, VA, 28 October 1983.

7. R. 0. Duda, et al., "Development of the PROSPECTOR Consultation
System for Mineral Exploration," Final Report, SRI Projects
5821 and 6415, 1978.

8. R. 0. Duda, and E. H. Shortliffe, "Expert Systems Research,"Science, pp. 261-268, 1983.

9. F. Hayes-Roth, D. A. Waterman, D. B. Lenat, eds., Building
Expert Systems, Reading, MA: Addison-Wesley Publishing
Company, 1984.

10. J. Kunz, et al., "A Physiological Rule-Based System for
Interpreting Pulmonary Function Test Results," Heuristic
Programming Project Report No. HPP-78-19, Computer Science

Department, Stanford University, 1978.

11. R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and
J. Lederberg, Applications of Artificial Intelligence for
Organic Chemistry: The DENDRAL Project, NY: McGraw-Hill,
1980.

51

4 p.4

12. W. A. Martin, and R. J. Fateman, The MACSYMA System,
In Proceedings of the Second Symposium on Symbolic and
Algebraic Manipulation, Los Angeles, CA, 1971, pp. 59-75.

13. Mathlabs Group, MACSYMA Reference Manual, Cambridge, MA,
Massachusetts Institute of Technology, Computer Science
Laboratory, 1977.

14. D. C. McCall, P. H. Morris, D. F. Kibler, and R. J. Bechtel,

STAMMER2 Production System for Tactical Situation Assessment,
Technical Document 2984, Vol. 1, "Design Description," Vol. 2,
"Code," San Diego, CA, Naval Ocean Systems Center, October
1979.

15. R. K. Miller, ed., The 1984 Inventory of Expert Systems,
Fort Lee, NJ: Technical Insights, Inc., 1984.

16. H. P. Nii, E. A. Feigenbaum, J. 3. Anton, and A. 3. Rockmore,
"Signal-to-Symbol Transformation: HASP/SIAP Case Study," AI
Magazine, Vol. 3, No. 2, (spring 1982), pp. 23-35.

17. E. H. Shortliffe, Computer-Based Medical Consultations: MYCIN,
American Elsevier, NY, 1976.

18. E. H. Shortliffe, et al., "ONCOCIN: An Expert System for
Oncology Protocol Management," Proceedings of the Seventh
IJCAI, 1981, pp. 876-881.

19. J. R. Slagle, Symbolic Automatic Integrator (SAINT), Ph.D.
Diss. Rpt. 5G-0001, Lincoln Laboratory, Massachusetts Institute
of Technology, 1961.

20. A. vanMelle, Domain-Independent Production-Rule System for
Consultation Programs, In Proceedings of the Sixth
International Joint Conference on Artificial Intelligence,
pp. 923-925, Stanford, CA: Stanford University, Department of
Computer Science, 1979.

21. G. T. Vesonder, S. J. Stolfo, J. E. Zielinski, F. D. Miller,
D. H. Copp, "ACE: An Expert System for Telephone Cable
Maintenance," Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, 1983, pp. 116-121.

22. P. Winston, Artificial Intelligence, Reading, MA:
Addison-Wesley Publishing Company, 1979, 2nd ed., 1984.

52

10 ;71

